Wisconsin Place Residential Chevy Chase, MD

Jenna Marcolina

Construction Management Senior Thesis Presentation 2008 The Pennsylvania State University

Project Overview

Project Overview

- Overall Theme: The Building Envelope
 - Project Overview
 - · Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule
 - PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
 - Conclusion & Lessons Learned
 - Questions

onstruction Management

- Size
 - 485,000 SF; 15 stories
- Cost
 - \$90 million
- Schedule
 - June 2007 February 2009
- Structure
 - Post-tensioned concrete
- Façade
 Brick, stone, glass, metal
- 4 CM's and 3 developers working on a single podium

Jenna Marcolina

Project Overview

Project Overview

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule
 - PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
 - Conclusion & Lessons Learned
 - Questions

Jenna Marcolina

Prefabrication: Software

Prefabrication: Software

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

TERES

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

• MODEX & Neoromodex

• Performs prefab feasibility study for industrial plants

- 5 Categories
 - Plant location
 - Environment
 - Labor
 - Plant characteristics
 - Project risks
- Easily be translated to construction

THE ST.

2000 Study Software use 13% over past 15 years

• Top driving factors for prefabrication

- Cost, schedule, workforce issues
- Barriers to prefabrication
 - Additional planning, increased transportation, design inflexibility, procurement requirements

Prefabrication: New Technology

Prefabrication: New Technology

- Overall Theme: The Building Envelope
 - Project Overview
 - · Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule
 - PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
 - Conclusion & Lessons Learned
 - Questions

• The Brick Robot

- University of Maryland design team
- Automated brick placement system
- Accurate placement
- Issues with bond strength

Prefabrication: Precast Comparison

Prefabrication: Precast Comparison

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

TERES

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

- Sandwich Panel
 - Closed-cell insulation between 2
 concrete panels
 - Do not have the best thermal properties because insulation is so thin
 - Pre-finished interiors could get damaged during placement

• EIFS

- Exterior Insulating Finishing System
- Synthetic stucco panel
- Thin and lightweight
- Outermost layer protects against moisture penetration
 - Mold can be an issue

Jenna Marcolina

Precast Brick Façade

Precast Brick Façade

- Overall Theme: The Building Envelope
 - Project Overview
 - · Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

THEFT

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

• Problems

• Many constraints: time, money, resources, space

- Goals
 - Simplify façade construction by unitizing components
 - Maintain envelope integrity while reducing cost and schedule
- Expected Outcome
 - Alleviate site congestion by switching to a precast system
 - Eliminate need for masonry hoist and scaffolding

Jenna Marcolina

Precast: Product Selection

WALL

Architectural Research Concerning Study Robbing Results

Precast: Product Selection

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

- Slenderwall Panel System
 - By Smith-Midland

• Slenderwall Components

• 16 gauge 6" galvanized steel studs on 2' centers

- 1/2" air space
- 2" concrete facing
- Second Nature Precast Concrete Brick

Precast: Design Considerations

Precast: Design Considerations

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

VIEW .

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

• Typical Brick Veneer System

• Typical Slenderwall Construction

Jenna Marcolina

Precast: Design Considerations

Precast: Design Considerations

• Overall Theme: The Building Envelope

Project Overview

- · Building information, project team, architecture
- Prefabrication
 - Software, new technology, precast comparison
- Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

TRUCK

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

• Weight Comparison

- 62 psf difference
- Potential structural system reduction not analyzed because the slab is already crowded with various building elements

Component	Weight (psf)
Gvosum Board	2
Steel Studs	18
Sheathing	50
Mortar	39
Brick	35
Total Weight	144

Proposed System

Existing System

Component	Weight (psf)
Slenderwall Panel	30
Gypsum Board	2
Sheathing	50
Total Weight	82

Construction Management

4/15/08

Precast: Structural Connection

Precast: Structural Connection

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

THEF.

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

Typical Panel Connection Design

- 15' x 27.5' vertical panel containing (3) 6' x 6' window openings
- Tributary Area = 10' x 27.5' = 275 SF
- Gravity connections spaced at 5'
- Point Load = 275 SF x 87.75 PSF = 24.13 kips

• Angle Design

- L2.5" x 2.5" x 3/16"
- Bolt Design
 - A325 ³/₄" threaded bolt

Precast: Connection Details

Precast: Connection Details

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

THE

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

Typical Slenderwall Tie-Back Connection

Jenna Marcolina

Precast: Thermal Analysis

Precast: Thermal Analysis

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

TERM

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

• R-Value Calculation for Existing System

Existing System

Component	Thickness (inches)	Unit R-Value	Unit	Total R-Value
Inside air layer	N/A	0.68	ea	0.68
Gypsum board	0.5	0.45	ea	0.45
R-13 insulation	4	13	ea	13
Sheathing	0.5	1.09	ea	1.09
Asphalt felt	N/A	0.12	ea	0.12
Air gap	2	1.68	inch	3.36
Standard 4" brick	4	0.44	ea	0.44
Outside air layer	N/A	0.17	ea	0.17
Total Thickness	11	R-Value	hr-sf-F/BTU	19.31
		U-Value	BTU/hr-sf-F	0.0518

R-Value Calculation for Proposed System

Proposed System

Component	Thickness (inches)	Unit R-Value	Unit	Total R-Value
Inside air layer	N/A	0.68	ea	0.68
Gypsum board	0.5	0.45	ea	0.45
Vapor barrier	N/A	0.12	ea	0.12
R-13 insulation	6	13	ea	13
Air gap	0.5	1.68	inch	0.84
Foamed-in-place insulation	0.5	6.25	inch	3.125
Concrete w/ admixtures	2	2.615	ea	2.615
Outside air layer	N/A	0.17	ea	0.17
Total Thickness	9.5	R-Value	hr-sf-F/BTU	21
		U-Value	BTU/hr-sf-F	0.0476

Jenna Marcolina

Precast: Thermal Analysis

Precast: Thermal Analysis

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

- Summer Heating Loads: To = 90F, Ti = 75F
- $\Delta T = 15F$

Summer Heat Gain

System	Area (SF)	U-Value	ΔT (°F)	Heat Gain (BTU/hr)
Standard Brick	79208	0.0518	15	61544.616
Slenderwall Panels	79208	0.0476	15	56554.512
			Difference	4990.104
				8.11%

- Winter Cooling Loads: To = 15F, Ti = 70F
- $\Delta T = 55F$

Winter Heat Loss

System	Area (SF)	U-Value	ΔT (°F)	Heat Loss (BTU/hr)
Standard Brick	79208	0.0518	55	225663.592
Slenderwall Panels	79208	0.0476	55	207366.544
			Difference	18297.048
				8.11%

Precast: Cost Review

Precast: Cost Review

• Overall Theme: The Building Envelope

Project Overview

• Building information, project team, architecture

Prefabrication

- Software, new technology, precast comparison
- Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

THERE

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned

• Questions

• Cost at a glance...

Wall System Cost Comparison

System	Quantity	Unit	Cost/SF	Total Cost
Brick w/ Metal Studs	79208	SF	\$35	\$2,772,280
Slenderwall	79208	SF	\$50	\$3,960,400
		Difference	e	\$1,188,120
				42.86%

• Cost Considerations for...

Scaffolding Cost

Cost	Unit	Surface Area	Total Cost
\$252	SFCA	2700	\$680,400

Masonry Hoist Cost

Cost	Unit	Rental Period	Total Cost
\$4,775	month	10	\$47,750

Tower Crane Cost

Cost	Unit	Rental Period	Total Cost
\$35,200	month	2	\$70,400

Precast: Cost Review

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

THERE'S

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

• All things considered...

Costs	1
Slenderwall Cost Differential	\$1,188,120
Crane Usage (2 months)	\$70,400
Total Cost	64 050 500
Total Cost	\$1,200,020
Savings	
Scaffolding Removal	\$680,400
Hoist Removal	\$47,750
Cancel Ext. Framing Contract	\$1,940,000
Total Savings	\$2,668,150

THERE

Jenna Marcolina

Precast: Schedule Review

Precast: Constructability Review

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

THEFT

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

Durations

System	Quantity	Unit	Daily Output	Days	
Brick w/ Metal Studs	79208	SE	565	140.2	
	10200	0.		140.2	
Slenderwall	79208	SF	2500	31.7	
		Differen	100	108.5	Day Reduc

22 Week Schedule Reduction

• Crane Usage Calculations

250 panels x .333 hours/panel = 83.33 hours of crane usage
83.33 hours/32 day duration = 2.6 hours/day of crane usage

Jenna Marcolina

Construction Management

4/15/08

Precast: Recommendation

Precast: Recommendation

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

THE R. P.

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

• Replace the hand-laid brick façade with Slenderwall panels because:

- It saves time and money
- Thermal resistance is increased
- It reduces site congestion by limiting the number of trades working on the façade

Jenna Marcolina

PV Glass Replacement

PV Glass Replacement

- Overall Theme: The Building Envelope
 - Project Overview
 - · Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

THE

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

Problems

- Building operating costs are expensive
- Tenants pay for utilities individually
- Goals
 - Lower utility bills for tenants by implementing solar power

- Reduce energy consumption of building by same token
- Expected Outcome
 - To save the owner money in the long run by investing a bit more upfront
 - To introduce a functional and value-enhancing façade alternative

PV Glass: Defined

PV Glass: Defined

• Overall Theme: The Building Envelope

- Project Overview
 - Building information, project team, architecture
- Prefabrication
 - · Software, new technology, precast comparison
- Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

VERD.

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

Photovoltaic cells

- Made of multicrystalline silicon
- Convert solar radiation from the sun into electrical energy that can be used to power a building

• Reliable and virtually maintenance free

• Building Integrated Photovoltaic (BIPV) System

- PV panels replace window panes in aluminum frame
- Serves form and function simultaneously
- Grid-Tied Systems
 - Connected to local utility
 - On-site production of solar electricity is greatest at the time of the building's peak utility loads
 - The state of Maryland allows net metering

Jenna Marcolina

PV Glass: Product Information

PV Glass: Product Information

- Overall Theme: The Building Envelope
 - Project Overview
 - · Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Facade
 - Design considerations, structural connection, thermal, cost, schedule

THERE

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

- BP Solar 50 Watt Panels
 - 72 cells in a 4 x 18 matrix connected in 2 parallel strings of 36 in series

Xantrex GT5.0 Inverter

-

--- f.t .

		GT2.8 Inve
		GT3.3N Inverter
		GT4.0N Inverter
rex.		GT5.0 Inve

Model	Features	xantrex
GT2.8 Inverter	208VAC Max. Ovgut: 2700W 240VAC Max. Ovgut: 2800W Convection cooled (no fair) Outdoor Rated NEMA 3R 10 year warranty	
GT3.3N Inverter	298VAC Max. Output: 3100W 240VAC Max. Output: 3300W Convection cooled (in 5arl) Outboor Rated NEMA 3R 19 year warranty	Xantrex GT Deries Inverter
GT4.0N Inverter	208VAC Max. Output: 3800W 249VAC Max. Output: 4000W Consection costext (so fair) Outdoor Rated NEMA 3R 50 uses assesses	
GT5.0 inverter	208VAC Max. Output: 4500W 240VAC Max. Output: 3000W Convection cooled (no fan) Outpoor Rated NEMA 3R 10 year warranty	

PV Glass: Logistics

PV Glass: Logistics

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

THE OWNER ADDRESS OF

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

• Replace all foot-level panels in aluminum window frames with PV panels

- 2,342 panels total (33% façade glass)
- View from apartment not obstructed
- Panels will be shipped to window manufacturer and factory installed in frames, keeping windows unitized

PV Glass: Mechanical Analysis

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusion & Lessons Learned
- Questions

• Energy Use Comparison Report – 50 Watt Panels

• Annual Energy Use – 50 Watt Panels

	Results	- Ex	leting Case	Proposed Case	S Ch	ings.		
	Energy cost							
	\$/Therm		0.4	0.4				
	S/kWh		0.078	0.078				
	S/kW		2.47	2.47				
	Simulation dates	01-J	an to 31-Dec	01-Jan to 31-Dec				
	Energy use, kBtu		21765730	21693586		0.33		
	Energy cost, \$		546526	544872		-0.3		
	Saved by daylighting, kWh							
	Transfer and a later	_	607064.0	6067460	_	0.00		
lts			Exi	sting Case			Proposed Case	% Cl
truc	tion Costs	1		\$82,087,9	92		\$82,267,384	
Cycle	e Cost			\$100,265,0	40		\$100,374,976	
	Unranulated/orcerent loads		1071873	1071873		0		
	Peak Electric, IW	-	2973.2	2973.2		0		
	Annual Emission	-	Loron	LITOIL		-		
	CO2. Ins	-	8577851	8544436		0.33		
	507 lbs		50391	50224		0.33		
	NOr In	-	26152	26066		0.33		
	Construction Costs		582.087.992	\$82,297,184	1	0.22		
	Life-Cycle Cost		5100,245,040	\$100.374.976	-	0.11		

Jenna Marcolina

Construction Management

Res

o.22 0.11

PV Glass: Results

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule
 - PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
 - Conclusion & Lessons Learned
 - Questions

- Annual Energy Savings = \$1,654
- Payback Period = 108 years
- Construction cost of proposed system is \$179,392 more than the existing system

• Life cycle cost of proposed system is \$109,936 more than the existing system, so there is no savings over time

Jenna Marcolina

PV Glass: Recommendation

- Overall Theme: The Building Envelope
 - Project Overview
 - · Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule
 - PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
 - Conclusion & Lessons Learned
 - Questions

- The 50 Watt panels are not strong enough to produce any significant energy savings
- A simulation was run using 200 Watt panels, and this showed a reduction in life cycle cost as well as a \$34,650 annual energy cost savings
- Use higher wattage panels in the form of solar shades or skylights

Jenna Marcolina

Conclusions

• Overall Theme: The Building Envelope

- Project Overview
 - Building information, project team, architecture
- Prefabrication
 - · Software, new technology, precast comparison
- Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule
- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusions & Lessons Learned
- Questions

Prefabrication

- Driving factors for industry
- Technology to simplify prefab decision process
- Precast Brick Façade
 - Cost and schedule reduced
 - Thermal resistance increased
 - Site congestion alleviated through consolidation of trades
 - Exterior thickness decreased, floor space increased
- PV Glass Replacement
 - Must use higher power panels to achieve significant energy-saving results

• Owner could introduce more solar panels to the building in the form of skylights or solar shades

Jenna Marcolina

Lessons Learned

- Overall Theme: The Building Envelope
 - Project Overview
 - Building information, project team, architecture
 - Prefabrication
 - Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule

VERD.

- PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
- Conclusions & Lessons Learned
- Questions

- Thesis ideas will evolve throughout the entire year, so don't sweat it if you don't have an analysis or your topic keeps changing
- Industry members are willing to help if you can get past the angry hang ups
 - HINT: Don't tell them you're a student
- You can teach an old dog new tricks
- You know a lot more than you think
 - You might just need to dust off the old textbooks
- Completing your thesis is an achievable goal

Jenna Marcolina

Questions

Acknowledgements

- Overall Theme: The Building Envelope
 - Project Overview
 - · Building information, project team, architecture
 - Prefabrication
 - · Software, new technology, precast comparison
 - Precast Brick Façade
 - Design considerations, structural connection, thermal, cost, schedule
 - PV Glass Replacement
 - Logistics, life cycle cost comparison, Energy 10 results
 - Conclusions & Lessons Learned
 - Questions

Turner Construction Company

• Barbara Choate, Thomas Bizzarri, Rich Murphy

- Penn State Faculty
 - Dr. Horman, Dr. Messner, Dr. Riley, Dr. Lose
- Smith-Midland Corporation
- PACE industry members
- My family and friends for their love and encouragement
- My fellow AE's for the past 5 years

Jenna Marcolina

